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Abstract: When using the visualize to compare algorithms, never forget that the visualize sorts only very small 

arrays. The effect of quadratic complexity (either a square number of moves or a square number of exchanges) is 

dramatic as the size of the array grows. For instance, dichotomic insertion, which is only marginally slower than 

quick sort on 100 items, becomes 10 times slower on 10000 items. We have investigated the complexity values 

researchers have obtained and observed that there is scope for fine tuning in present context. Strong evidence to 

that effect is also presented. We aim to provide a useful and comprehensive note to researcher about how 

complexity aspects of sorting algorithms can be best analyzed. 
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I.     INTRODUCTION 

"Before there were computers, there were algorithms." But now that there are computers, there are even more algorithms, 

and algorithms lie at the heart of computing. What are algorithms? Informally, an algorithm is any well-defined 

computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as 

output. An algorithm is thus a sequence of computational steps that transform the input into the output. We can also view 

an algorithm as a tool for solving a well-specified computational problem. The statement of the problem specifies in 

general terms the desired input/output relationship. The algorithm describes a specific computational procedure for 

achieving that input/output relationship. For example, we might need to sort a sequence of numbers into non decreasing 

order. This problem arises frequently in practice and provides fertile ground for introducing many standard design 

techniques and analysis tools. 

This paper is about algorithm theory introduction and just overview of algorithmic basics. If computers were infinitely 

fast, any correct method for solving a problem would do. You would probably want your implementation to be within the 

bounds of good software engineering practice (for example, your implementation should be well designed and 

documented), but you would most often use whichever method was the easiest to implement. Of course, computers may 

be fast, but they are not infinitely fast. And memory may be inexpensive, but it is not free. Computing time is therefore a 

bounded resource, and so is space in memory. You should use these resources wisely, and algorithms that are efficient in 

terms of time or space will help you do so. 

II.     COMPLEXITY OF ALGORITHM 

The complexity of an algorithm is the cost, measured in running time, or storage, or whatever units are relevant, of using 

the algorithm to solve one of those problems. 
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III.     BACKGROUND KNOWLEDGE 

In computer science and mathematics, a sorting algorithm is an algorithm that puts elements of a list in a certain order. 

The most used orders are numerical order and lexicographical order. Sorting algorithms are often prevalent in 

introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction 

to a variety of core algorithm concepts. Herein, we restrict the scope of sorting to ordering of data by a digital computer. 

Given a collection of data entries and an ordering key, sorting deals with various processes invoked to arrange the entries 

into a desired order. Sorting algorithms are of two types. Internal and External, depending upon ordering a list of elements 

residing in primary storage or secondary storages. There are two types of each of them viz, the comparative and the 

distributive. The comparative algorithms order the list by making a series of comparisons of the relative magnitude of the 

ordering keys of the elements. The distributive algorithms order the list by testing a key or a digit of a key against a 

standard and collecting all members of a group together. Group definitions are then modified so that all elements and 

groups are ordered during a last pass. The performance of comparative algorithms varies with the number of elements to 

be sorted and the permutation of the elements. The performance of distributive algorithm varies with the range of the keys 

and their distribution. The criteria for measuring the performance of an ordering algorithm include, the number of 

comparisons that must be performed before the list is ordered, the number of movements of data on the list before the list 

is ordered, the amount of space required beyond that needed to hold the list, and the sensitivity to certain kinds of order of 

the data. The number of comparisons among algorithms varies considerably. 

An algorithm's average performance is its behavior under "normal conditions". In almost all situations the resource being 

considered is running time, but it could also be memory, for instance. The worst case is most of concern since it is of 

critical importance to know how much time would be needed to guarantee the algorithm would finish. Let us see how 

complexity of a sorting algorithm is measured [1].Consider Merge Sort algorithm. The merge sort function/algorithm 

(merge sort l) takes a list l of length n, and does a merge on the merge sort of the first half of l, and the merge sort of the 

second half of l. The stopping condition is when the list l is of size 0 or 1. Let the merge function takes two sorted lists l1 

and l2. At each step merge takes the smaller of the head of l1 and the head of l2, and appends it to a growing list, and 

removes that element from the list (either l1 or l2). A merge on lists of length n/2 is O (n).The running time of merge sort 

on a list of n elements is then , t(0) = 0 , t(1) = 1 ,  t(n) = 2.t(n/2) + c.n , where c.n is the cost of merging two lists of length 

n/2, and the term 2t(n/2) is the two recursive calls to merge sort with lists l1 and l2 of length n/2. Consequently, 

T (n) = 2.t (n/2) + c.n 

= 2. (2. t (n/4) + c.n/2) + c.n 

= 2. (2. (2.t (n/8) + c.n/4) + c.n/2) + c.n 

= 8.t (n/8) + 3.c.n 

A pattern emerges and by induction on i we obtain t (n) = 2^i.t(n/2^i) + i.c.n , Where the operator ^ is "raised to the 

power". If we assume that n is a power of 2 (i.e., 2, 4, 8, 16, 32, generally 2^k) the expansion process comes to an end 

when we get t (1) on the right, and that occurs when i=k, whereupon t(n) = 2^k.t(1) + k.c.n We have just stated that the 

process comes to an end when i=k, where n = 2^k. Put another way, k = log n (to the base 2 of course), therefore t (n) = n 

+ c.n.log n = O(n log n). Thus O(n log n) is the threshold value of complexity of sorting algorithms. 

In our work, if the size of unsorted list is (n), then for typical sorting algorithm, good behavior is O (n log n) and bad 

behavior is _ (n²). The Ideal behavior is O (n). Sort algorithms which only use an abstract key comparison operation 

always need (n log n) comparisons in the worst case. Literature review carried out in [5] indicates the man’s longing 

efforts to improve running time of sorting algorithm with respect to above core algorithmic concepts. 

IV.     ANALYSIS OF SORTING ALGORITHMS 

The common sorting algorithms can be divided into two classes by the complexity of their algorithms as, (n2), which 

includes the bubble, insertion, selection, and shell sorts , and (n log n) which includes the heap, merge, and quick sorts. 

(A) Selection Sort 

Selection sort is not difficult to analyze compared to other sorting algorithms since none of the loops depend on the data 

in the array. Selecting the lowest element requires scanning all n elements (this takes n − 1 comparisons) and then 
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swapping it into the first position. Finding the next lowest element requires scanning the remaining n − 1 elements and so 

on, for (n − 1) + (n − 2) + ... + 2 + 1 = n(n − 1) / 2 ∈ Θ(n
2
) comparisons (see arithmetic progression). Each of these scans 

requires one swap for n − 1 elements (the final element is already in place). Among simple average-case Θ(n
2
) algorithms, 

selection sort almost always outperforms bubble sort and gnome sort, but is generally outperformed by insertion sort. 

Insertion sort is very similar in that after the k
th

 iteration, the first k elements in the array are in sorted order. Insertion 

sort's advantage is that it only scans as many elements as it needs in order to place the k + 1st element, while selection sort 

must scan all remaining elements to find the k + 1st element. Simple calculation shows that insertion sort will therefore 

usually perform about half as many comparisons as selection sort, although it can perform just as many or far fewer 

depending on the order the array was in prior to sorting. It can be seen as an advantage for some real-time applications 

that selection sort will perform identically regardless of the order of the array, while insertion sort's running time can vary 

considerably. However, this is more often an advantage for insertion sort in that it runs much more efficiently if the array 

is already sorted or "close to sorted." While selection sort is preferable to insertion sort in terms of number of writes (Θ(n) 

swaps versus Ο(n
2
) swaps), it almost always far exceeds (and never beats) the number of writes that cycle sort makes, as 

cycle sort is theoretically optimal in the number of writes. This can be important if writes are significantly more expensive 

than reads, such as with EEPROM or Flash memory, where every write lessens the lifespan of the memory. 

(B) Bubble Sort 

The bubble sort is the oldest and simplest sort in use. Unfortunately, it’s the slowest one. The bubble sort works by 

comparing each item in the list with the item next to it, and swapping them if required. The algorithm repeats this process 

until it makes a pass all the way through the list without swapping any items (in other words, all items are in the correct 

order This causes larger values to "bubble" to the end of the list while smaller values "sink" towards the beginning of the 

list. The bubble sort is generally considered to be the most inefficient sorting algorithm in common usage. While the 

insertion, selection and shell sorts also have O (n2) complexities, they are significantly more efficient than the bubble sort. 

A fair number of algorithm purists (which means they've probably never written software for a living) claim that the 

bubble sort should never be used for any reason. Realistically, there isn't a noticeable performance difference between the 

various sorts for 100 items or less, and the simplicity of the bubble sort makes it attractive. The bubble sort shouldn't be 

used for repetitive sorts or sorts of more than a couple hundred items. Clearly, bubble sort does not require extra memory. 

(C)  Insertion Sort 

The insertion sort works just like its name suggests - it inserts each item into its proper place in the final list. The simplest 

implementation of this requires two list structures - the source list and the list into which sorted items are inserted. To 

save memory, most implementations use an in-place sort that works by moving the current item past the already sorted 

items and repeatedly swapping it with the preceding item until it is in place. Like the bubble sort, the insertion sort has a 

complexity of O (n2). Although it has the same complexity, the insertion sort is a little over twice as efficient as the 

bubble sort. It is relatively simple and easy to implement and inefficient for large lists. Best case is seen if array is already 

sorted. It is a linear function of n. The worst-case occurs; when array starts out in reverse order .It is a quadratic function 

of n. The insertion sort is a good middle-of-the-road choice for sorting lists of a few thousand items or less. The algorithm 

is significantly simpler than the shell sort, with only a small trade-off in efficiency. At the same time, the insertion sort is 

over twice as fast as the bubble sort and almost 40% faster than the selection sort. The insertion sort shouldn't be used for 

sorting lists larger than a couple thousand items or repetitive sorting of lists larger than a couple 

hundred items. Since multiple keys with the same value are placed in the sorted array in the same order that they appear in 

the input array, Insertion sort is stable. This algorithm does not require extra memory. 

(D) Quick Sort 

From the initial description it's not obvious that quick sort takes O(n log n) time on average. It's not hard to see that the 

partition operation, which simply loops over the elements of the array once, uses O(n) time. In versions that perform 

concatenation, this operation is also O(n). 

In the best case, each time we perform a partition we divide the list into two nearly equal pieces. This means each 

recursive call processes a list of half the size. Consequently, we can make only nested calls before we reach a list 

http://en.wikipedia.org/wiki/Arithmetic_progression
http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Gnome_sort
http://en.wikipedia.org/wiki/Insertion_sort
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Cycle_sort
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Flash_memory
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of size 1. This means that the depth of the call tree is . But no two calls at the same level of the call tree process 

the same part of the original list; thus, each level of calls needs only O(n) time all together (each call has some constant 

overhead, but since there are only O(n) calls at each level, this is subsumed in the O(n) factor). The result is that the 

algorithm uses only O(n log n) time. 

An alternative approach is to set up a recurrence relation for the T(n) factor, the time needed to sort a list of size . 

Because a single quick sort call involves O(n) factor work plus two recursive calls on lists of size in the best case, 

the relation would be. 

 

The master theorem tells us that T(n) = O(n log n). 

In fact, it's not necessary to divide the list this precisely; even if each pivot splits the elements with 99% on one side and 

1% on the other (or any other fixed fraction), the call depth is still limited to, so the total running time is still O(n log n). 

V.     CONCLUSION 

In our paper, asymptotic analysis of the algorithms is mainly touched upon and efforts are made to point out some 

deficiencies in earlier work related to analysis of sorting algorithms. Till today, sorting algorithms are open problems and 

in our view, complexity research regarding sorting algorithm, up to some extent, is the momentarily belief among people. 

These researches are not absolute as their results are specific some factors discussed herein. We have shown that, every 

sorting algorithm can undergo a fine tuning with the intelligence aspects we have discovered so as to gain significant 

reduction in complexity values. The important thing we want to share is to forget the prejudice i.e., pick the sorting 

algorithm that we think is most appropriate for the task at hand, there by neglecting its literature values as those values are 

not absolute, rather relative. We are aware that the efficiency gain will not go beyond O (n log n), but hopeful enough to 

reduce complexities by using intelligent tactics , for example, there could be a smooth transition from quadratic 

complexity to linear one observed in comparative sorts due to intelligently using linked lists instead of arrays to hold data 

. This drastically reduce the space requirement since no need to swap the data as we need to change the pointers only , 

there by keeping the contents of nodes , the same . We have also showed that the choice of sorting algorithm is not a 

straight forward matter, as a number of issues may be relevant. It may be the case that an O (n*n) algorithm is more 

suitable than an O(n log n) algorithm. 
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